Evaluation of Effectiveness of Large Language Models in Ontology and Knowledge Graph Creation
DOI:
https://doi.org/10.17821/srels/2025/v62i2/171792Keywords:
ChatGPT, Evaluation, Knowledge Graph, Large Language Models, Ontology Development, Perplexity AI, Prompt Engineering, Semantic Web SeniorAbstract
This study investigates the effectiveness of selected Large Language Models (LLMs), namely ChatGPT 3.5, Semantic Web Senior (GPT-4), and Perplexity AI, in automating the creation of ontologies and knowledge graphs from unstructured, paragraph-style text using prompt engineering techniques. The research follows a five-phase methodology, including identifying suitable LLMs, developing tailored prompts for interaction, and assessing their performance based on specific parameters. The findings reveal that Perplexity AI outperforms other LLMs regarding comprehensiveness, query handling, and defining data properties. While ChatGPT models demonstrate the ability to generate ontologies, they exhibit limitations in defining subclass relationships and managing domain and range specifications of properties. The study emphasises the critical role of prompt engineering in optimising the capabilities of LLMs for ontology and knowledge graph creation. It offers a structured evaluation methodology, shedding light on the strengths and weaknesses of each LLM. By leveraging prompt engineering, this research uniquely illustrates how systematically chosen LLMs can facilitate the development of ontologies and knowledge graphs from unstructured text and identifies the most effective models through detailed performance analysis.
Downloads
References
Barilla, G. 2024. ChatGPT advanced data analysis: Guide and use cases. 2024. https://www.akkio.com/post/chatgptadvanceddata-analysis.
Bertaud-Gounot, V., Duvauferrier, R., & Burgun, A. (2011). Ontology and medical diagnosis. Informatics for Health and Social Care, 37(2), 51-61. https://doi.org/10.3109/17538157.2011.590258 PMid:22462194
Bischof, S., Filtz, E., Parreira, J. X., & Steyskal, S. (2025). LLMbased guided generation of ontology term definitions. Lecture Notes in Computer Science, 133-137. https://doi.org/10.1007/978-3-031-78952-6_13
Blumauer, A. (2014). From Taxonomies over ontologies to knowledge graphs. Semantic web company. Semantic Web Company. https://semantic-web.com/from-taxonomiesoverontologies-to-knowledge-graphs/
Borst, W. (1997). Construction of engineering ontologies, [Doctoral dissertation, Enschede, Institute for Telematica and Information Technology, University of Twente, The Netherlands].
Bsharat, S. M., Myrzakhan, A., & Shen, Z. (2024). Principled instructions are all you need for questioning LLaMA-1/2, GPT-3.5/4. ArXiv.org. http://arxiv.org/abs/2312.16171
Cheng, Y., Zhang, C., Zhang, Z., Meng, X., Hong, S., Li, W., …, He, X. (2024). Exploring large language model based intelligent agents: definitions, methods, and prospects. ArXiv.org. http://arxiv.org/abs/2401.03428
Ciatto, G., Agiollo, A., Magnini, M., & Omicini, A. (2024). Large language models as Oracles for instantiating ontologies with domain-specific knowledge. Knowledge-Based Systems, 310, 112940. https://doi.org/10.1016/j.knosys.2024.112940
da Silva, L. M. V., Kocher, A., Gehlhoff, F., & Fay, A. (2024). On the use of large language models to generate capability ontologies. 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 33, 1-8. http://arxiv.org/abs/2404.17524
De Bellis, A. (2023). Structuring the unstructured: An LLMguided transition. Proceedings of the Doctoral Consortium at ISWC 2023, Athens, Greece. https://ceur-ws.org/Vol3678/#paper12
Deike, M. (2024). Evaluating the performance of ChatGPT and Perplexity AI in business reference. Journal of Business and Finance Librarianship, 29(2), 1-30. https://doi.org/10.1080/ 08963568.2024.2317534
Ding, Y., & Foo, S. (2002). Ontology research and development. Part 1 - A review of ontology generation. Journal of Information Science, 28(2), 123-136. https://doi.org/10.1177/016555150202800204
Dutta, B. (2017). Examining the interrelatedness between ontologies and linked data. Library Hi Tech, 35(2), 312-331. https://doi.org/10.1108/LHT-10-2016-0107
Dutta, B., & Bain, D. (2023). Finding closeness between EHRMDS and open-source electronic health record systems: An analytical approach. Communications in Computer and Information Science, 122-134. https://doi.org/10.1007/978-3-031-39141-5_11
Dutta, B., Chatterjee, U., & Madalli, D. P. (2015). YAMO: Yet Another Methodology for large-scale faceted Ontology construction. Journal of Knowledge Management, 19(1), 6-24. https://doi.org/10.1108/JKM-10-2014-0439
Dutta, B., Durgesh, N, & Shahi, G. K. (2015). MOD: Metadata for ontology description and publication. Conference: International Conference on Dublin Core and Metadata Applications (DC-2015), Sao Paulo, Brazil.
Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., & Hemphill, L. (2017). A bibliometric review of large language models research from 2017 to 2023. ArXiv.org. https://doi.org/10.1145/3664930
Ferrag, M. A., Battah, A., Tihanyi, N., Jain, R., Maimuţ, D., Alwahedi, F., … Cordeiro, L. C. (2025). SecureFalcon: Are we there yet in automated software vulnerability detection with LLMs? IEEE Transactions on Software Engineering, 1-18. https://doi.org/10.1109/TSE.2025.3548168
Funk, M., Hosemann, S., Jung, J. C., & Lutz, C. (2023). Towards ontology construction with language models. ArXiv (Cornell University). https://doi.org/10.48550/arXiv.2309.09898
Giglou, H. B., D’Souza, J., & Auer, S. (2023). LLMs4OL: Large language models for ontology learning. Lecture Notes in Computer Science, 408-427. https://doi.org/10.1007/978-3031-47240-4_22
Giray, L. (2023). Prompt engineering with ChatGPT: A guide for academic writers. Annals of Biomedical Engineering, 51, 2629-2633. https://doi.org/10.1007/s10439-023-03272-4 PMid:37284994
Groza, T., Caufield, H., Gration, D., Baynam, G., Haendel, M. A., Robinson, P. N., … Reese, J. T. (2024). An evaluation of GPT models for phenotype concept recognition. BMC Medical Informatics and Decision Making, 24(1). https://doi.org/10.1186/s12911-024-02439-w PMid:38297371 PMCid:PMC10829255
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199220. https://doi.org/10.1006/knac.1993.1008
Häse, N. (2024). LLMs and ontologies: The future of AI. Semper-KI (blog). https://magazin.semper-ki.org/llmsandontologies-the-future-of-ai/
He, Y., Chen, J., Dong, H., & Horrocks, I. (2023). Exploring large language models for ontology alignment. ArXiv (Cornell University). https://doi.org/10.48550/arXiv.2309.07172
Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., Gutierrez, C., … Zimmermann, A. (2022). Knowledge graphs. ACM Computing Surveys, 54(4), 1-37. https://doi.org/10.1145/3447772
Hoseini, S., Burgdorf, A., Paulus, A., Meisen, T., Quix, C., & Pomp, A. (2024). Towards LLM-augmented creation of semantic models for dataspaces. The Second International Workshop on Semantics in Dataspaces, co-located with the Extended Semantic Web Conference, Hersonissos, Greece.
Kommineni, V. K., König-Ries, B., & Samuel, S. (2024). From human experts to machines: An LLM supported approach to ontology and knowledge graph construction. ArXiv.org. https://doi.org/10.48550/arXiv.2403.08345
Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., …, Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/journal.pdig.0000198 PMid:36812645 PMCid:PMC9931230
Lan, T., Zhang, W., Xu, C., Huang, H., Lin, D., Chen, K., & Mao, X. (2024). CriticEval: Evaluating Large Language Model as Critic. ArXiv.org. http://arxiv.org/abs/2402.13764
Lawton, G. (2023). What is prompt engineering? - TechTarget definition. Enterprise AI. https://www.techtarget.com/searchenterpriseai/definition/prompt-engineering
Li, Q., Chen, Z., Ji, C., Jiang, S., & Li, J. (2024). LLM-based multilevel knowledge generation for few-shot knowledge graph completion, Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence Main Track. https://doi.org/10.24963/ijcai.2024/236
Maity, S., Deroy, A., & Sarkar, S. (2024). Exploring the capabilities of prompted large language models in educational and assessment applications. ArXiv.org http://arxiv.org/ abs/2405.11579
Martino, A., Iannelli, M., & Truong, C. M. (2023). Knowledge injection to counter Large Language Model (LLM) hallucination. Lecture Notes in Computer Science, 182185. https://doi.org/10.1007/978-3-031-43458-7_34
Mateiu, P., & Groza, A. (2023). Ontology engineering with Large Language Models. ArXiv.org. http://arxiv.org/ abs/2307.16699
Meyer, L.-P., Stadler, C., Frey, J., Radtke, N., Junghanns, K., Meissner, R., …, Martin, M. (2024). LLM-assisted knowledge graph engineering: Experiments with ChatGPT. Informatik Aktuell, 103-115. https://doi.org/10.1007/978-3-65843705-3_8
Neuhaus, F. (2023). Ontologies in the era of large language models – A perspective. Applied Ontology, 18(4), 399-407. https://doi.org/10.3233/AO-230072.
Norouzi, S. S., Mahdavinejad, M. S., & Hitzler, P. (2023). Conversational ontology alignment with ChatGPT. ArXiv (Cornell University). https://doi.org/10.48550/arXiv.2308.09217
Noy, N. F., & McGuinness, D. L. (n.d.). What is an ontology and why we need it. https://perso.liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%20and%20why%20we%20need%20it.htm (Accessed 2024 Jun 12).
Noy, N. F, & McGuinness., D. L. (n.d.). Ontology development 101: A guide to creating your first ontology. https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
Patil, R., & Venkat Gudivada. (2024). A review of current trends, techniques, and challenges in Large Language Models (LLMs). Applied Sciences (Basel), 14(5), 2074-2074. https://doi.org/10.3390/app14052074
Peng, R., Liu, K., Yang, P., Yuan, Z., & Li, S. (2023). Embeddingbased retrieval with LLM for effective agriculture information extracting from unstructured data. ArXiv.org. https://doi.org/10.48550/arXiv.2308.03107
Petukhova, A., Matos-Carvalho, J. P., & Fachada, N. (2024). Text clustering with LLM embeddings. ArXiv.org. https://doi.org/10.48550/arXiv.2403.15112
Qiu, Y., & Jin, Y. (2024). ChatGPT and finetuned BERT: A comparative study for developing intelligent design support systems. Intelligent Systems with Applications, 21, 200308. https://doi.org/10.1016/j.iswa.2023.200308
Ramprasad, S., Krishna, K., Lipton, Z. C., & Wallace, B. C. (2024). Evaluating the factuality of zero-shot summarizers across varied domains. ArXiv.org. http://arxiv.org/abs/2402.03509.
Saeedizade, M. J., & Blomqvist, E. (2024). Navigating ontology development with large language models. Lecture Notes in Computer Science, 143-161. https://doi.org/10.1007/978-3-031-60626-7_8
Trajanoska, M., Stojanov, R., & Trajanov, D. (2023). Enhancing knowledge graph construction using large language models. ArXiv.org. https://doi.org/10.48550/arXiv.2305.04676
Wang, C., Liu, X., & Song, D. (2020). Language models are open knowledge graphs. ArXiv (Cornell University). https://doi.org/10.48550/arXiv.2010.11967
Wu, C., Lin, W., Zhang, X., Zhang, Y., Wang, Y., & Xie, W. (2023). PMC-LLaMA: Towards building open-source language models for medicine. ArXiv.org. http://arxiv.org/abs/2304.14454
Yao, L., Mao, C., & Luo, Y. (2019). KG-BERT: BERT for knowledge graph completion. ArXiv (Cornell University).. https://doi.org/10.48550/arXiv.1909.03193
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., …, Wen, J-R. (2023). A survey of large language models. ArXiv.org. https://doi.org/10.48550/arXiv.2303.18223
Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y., …, Zhang, N. (2023). LLMs for knowledge graph construction and reasoning: Recent capabilities and future opportunities. ArXiv.org. https://doi.org/10.1007/s11280-024-01297-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Information and Knowledge

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All the articles published in Journal of Information and Knowledge are held by the Publisher. Sarada Ranganathan Endowment for Library Science (SRELS), as a publisher requires its authors to transfer the copyright prior to publication. This will permit SRELS to reproduce, publish, distribute and archive the article in print and electronic form and also to defend against any improper use of the article.